传统数据分析无法应对大数据的出现,大数据本质上是结构化和非结构化的大数据。能够在关系数据库管理系统上进行导航并使用统计算法得出见解的需求还更多。
好消息是,无论您处理的是小型数据集,大型数据集,还是非结构化数据集,分析部分均保持不变。大数据中最需要的是每分钟从庞大的数据处理量中提取相关信息的能力。这需要技术与传统分析联手。AAA教育小编分析成为大数据分析师所需的一些关键技能:
一、编程
尽管传统的数据分析员可能不需要一个成熟的程序员就可以摆脱困境,但是大数据分析员需要非常熟悉编码。产生此要求的主要原因之一是大数据仍处于发展阶段。围绕大数据分析师必须处理的大型复杂数据集设置的标准流程并不多。每天都需要大量定制以处理非结构化数据。
需要哪些语言R,Python,Java,C ++,Ruby,SQL,Hive,SAS,SPSS,MATLAB,Weka,Julia和Scala。正如您所不知道的那样,语言不应该成为大数据科学家的障碍。至少需要了解R,Python和Java。在工作时,您可能最终会使用各种工具。编程语言仅是一种工具,而且在您的小猫咪中拥有更多工具,这是更好的选择。
二、数据仓库
必须具有关系和非关系数据库系统的经验。非关系数据库的示例包括– Mysql,Oracle,DB2。非关系数据库的示例包括– NoSql:Hbase,HDFS,MongoDB,CouchDB,Cassandra,Teradeta等。
三、计算框架
对诸如Apache Spark,Apache Storm,Apache Samza,Apache Flink和经典的MapReduce和Hadoop之类的框架有很好的了解和熟悉。这些技术有助于大数据处理,并且可以在很大程度上进行流传输。
四、定量能力统计
尽管处理大数据需要大量使用技术,但是任何数据分析的基础都是对统计和线性代数的深入了解。统计学是数据科学的基本组成部分,如果您是任何类型的数据科学家,那么对摘要统计,概率分布,随机变量等核心概念的理解就很重要。
五、商业知识
为了保持分析的重点,验证,分类,关联和评估数据,大数据科学家的最关键技能是对正在研究的领域有充分的了解。实际上,大数据分析师需求如此之大的原因是,很难找到对技术方面,统计数据和业务有透彻了解的资源。有分析家擅长业务和统计,但不擅长编程。有些专家程序员不知道如何将程序放在业务目标的上下文中。
为了保持分析的重点,验证,分类,关联和评估数据,大数据科学家的最关键技能是对正在研究的领域有充分的了解。实际上,大数据分析师需求如此之大的原因是,很难找到对技术方面,统计数据和业务有透彻了解的资源。
有分析家擅长业务和统计,但不擅长编程。有些专家程序员不知道如何将程序放在业务目标的上下文中。
最后,很好地掌握机器学习非常有好处,因为它有助于管理复杂的数据结构和学习模式,而这些数据和学习模式很难使用传统数据分析来处理
填写下面表单即可预约申请免费试听!怕钱不够?可先就业挣钱后再付学费! 怕学不会?助教全程陪读,随时解惑!担心就业?一地学习,可推荐就业!
©2007-2022/ www.aaa-cg.com.cn 北京漫动者数字科技有限公司 备案号: 京ICP备12034770号 监督电话:010-53672995 邮箱:bjaaa@aaaedu.cc